Part Number Hot Search : 
SMA80 AE10737 2900A1 GAANUA LCX16 HC4078 V626ME10 GBU2506C
Product Description
Full Text Search
 

To Download ADXRS150ABG Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 150/s Single Chip Yaw Rate Gyro with Signal Conditioning ADXRS150
FEATURES
Complete rate gyroscope on a single chip Z-axis (yaw rate) response High vibration rejection over wide frequency 0.05/s/Hz noise 2000 g powered shock survivability Self-test on digital command Temperature sensor output Precision voltage reference output Absolute rate output for precision applications 5 V single-supply operation Ultrasmall and light (< 0.15 cc, < 0.5 gram)
GENERAL DESCRIPTION
The ADXRS150 is a complete angular rate sensor (gyroscope) that uses Analog Devices' surface-micromachining process to make a functionally complete and low cost angular rate sensor integrated with all of the required electronics on one chip. The manufacturing technique for this device is the same high volume BIMOS process used for high reliability automotive airbag accelerometers. The output signal, RATEOUT (1B, 2A), is a voltage proportional to the angular rate about the axis normal to the top surface of the package (see Figure 2). A single external resistor can be used to lower the scale factor. An external capacitor is used to set the bandwidth. Other external capacitors are required for operation (see Figure 22). A precision reference and a temperature output are also provided for compensation techniques. Two digital self-test inputs electromechanically excite the sensor to test the operation of both sensors and the signal conditioning circuits. The ADXRS150 is available in a 7 mm x 7 mm x 3 mm BGA surface-mount package.
APPLICATIONS
GPS navigation systems Vehicle stability control Inertial measurement units Guidance and control Platform stabilization
FUNCTIONAL BLOCK DIAGRAM
+ 5V -
100nF AVCC
3A
100nF AGND 2G 1F CMID
1D
COUT SUMJ 1C ROUT RSEN2 180k 1%
1B 2A
ST1 ST2
5G 4G
SELF TEST
CORIOLIS SIGNAL CHANNEL RSEN1 RATE SENSOR DEMOD
9k 35% 9k 35%
RESONATOR LOOP 2.5V REF PTAT
RATEOUT
1E
2.5V
3G TEMP 12V
CHARGE PUMP/REG.
PDD 4A 5A 7E 6G 7F 6A 7B 7C 7D
CP2
22nF
CP1 100nF
PGND
CP4
CP3
CP5 47nF
ADXRS150
22nF
Figure 1.
Rev. B
Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781.329.4700 www.analog.com Fax: 781.326.8703 (c) 2004 Analog Devices, Inc. All rights reserved.
ADXRS150
TABLE OF CONTENTS
Specifications..................................................................................... 3 Absolute Maximum Ratings............................................................ 4 Rate Sensitive Axis........................................................................ 4 ESD Caution.................................................................................. 4 Pin Configurations and Function Descriptions ........................... 5 Typical Performance Characteristics ............................................. 6 Theory of Operation ........................................................................ 9 Supply and Common Considerations ....................................... 9 Setting Bandwidth ........................................................................ 9 Increasing Measurement Range ............................................... 10 Temperature Output and Calibration...................................... 10 Using the ADXRS150 with a Supply-Ratiometric ADC ...... 10 Null Adjustment ......................................................................... 10 Self-Test Function ...................................................................... 10 Continuous Self-Test.................................................................. 10 Acceleration Sensitivity ............................................................. 11 Outline Dimensions ....................................................................... 12 Ordering Guide .......................................................................... 12
REVISION HISTORY
3/04--Data Sheet Changed from Rev. A to Rev. B Updated Format..................................................................Universal Changes to Table 1 Conditions ....................................................... 3 Added Evaluation Board to Ordering Guide .............................. 12 1/03--Data Sheet Changed from Rev. 0 to Rev. A Edit to Figure 5.................................................................................. 5
Rev. B | Page 2 of 12
ADXRS150
SPECIFICATIONS
@TA = 25C, VS = 5 V, bandwidth = 80 Hz (COUT = 0.01 F), angular rate = 0/s, 1g, unless otherwise noted. Table 1.
Parameter SENSITIVITY Dynamic Range2 Initial Over Temperature3 Nonlinearity Voltage Sensitivity NULL Initial Null Null Drift over Temperature3 Turn-On Time Linear Acceleration Effect Voltage Sensitivity NOISE PERFORMANCE Rate Noise Density FREQUENCY RESPONSE 3 db Bandwidth4 (User Selectable) Sensor Resonant Frequency SELF TEST ST1 RATEOUT Response5 ST2 RATEOUT Response5 Logic 1 Input Voltage Logic 0 Input Voltage Input Impedance TEMPERATURE SENSOR VOUT at 298K Max Current Load on Pin Scale Factor OUTPUT DRIVE CAPABILITY Output Voltage Swing Capacitive Load Drive 2.5 V REFERENCE Voltage Value Load Drive to Ground Load Regulation Power Supply Rejection Temperature Drift3 POWER SUPPLY Operating Voltage Range Quiescent Supply Current TEMPERATURE RANGE Specified Performance Grade A Conditions Clockwise rotation is positive output Full-scale range over specifications range @25C VCC = 4.75 V to 5.25 V Best fit straight line VCC = 4.75 V to 5.25 V Min1 150 11.25 11.25 ADXRS150ABG Typ Max1 Unit /s mV//s mV//s % of FS %/V V mV ms /s/g /s/V /s/Hz Hz kHz -1000 +1000 1.7 50 2.50 Source to common Proportional to absolute temperature IOUT = 100 A 0.25 1000 2.45 Source 0 < IOUT < 200 A 4.75 VS to 5.25 VS Delta from 25C 4.75 2.5 200 5.0 1.0 5.0 5.00 6.0 50 8.4 VS - 0.25 mV mV V V k V A mV/K V pF V A mV/mA mV/V mV V mA C
12.5 0.1 0.7 2.50
13.75 13.75
Delta from 25C Power on to 1/2/s of final Any axis VCC = 4.75 V to 5.25 V @25C 22 nF as comp cap (see the Applications section)
300 35 0.2 1 0.05 40 14 -400 +400 3.3 -660 +660
ST1 pin from Logic 0 to 1, -40C to +85C ST2 pin from Logic 0 to 1, -40C to +85C Standard high logic level definition Standard low logic level definition To common
2.55
5.25 8.0 +85
-40
1 2
All min and max specifications are guaranteed. Typical specifications are not tested or guaranteed. Dynamic range is the maximum full-scale measurement range possible, including output swing range, initial offset, sensitivity, offset drift, and sensitivity drift at 5 V supplies. 3 Specification refers to the maximum extent of this parameter as a worst-case value at TMIN or TMAX. 4 Frequency at which response is 3 dB down from dc response with specified compensation capacitor value. Internal pole forming resistor is 180 k. See the Setting Bandwidth section. 5 Self-test response varies with temperature. See the Self-Test Function section for details. Rev. B | Page 3 of 12
ADXRS150
ABSOLUTE MAXIMUM RATINGS
Table 2.
Parameter Acceleration (Any Axis, Unpowered, 0.5 ms) Acceleration (Any Axis, Powered, 0.5 ms) +VS Output Short-Circuit Duration (Any Pin to Common) Operating Temperature Range Storage Temperature Rating 2000 g 2000 g -0.3 V to +6.0 V Indefininte -55C to +125C -65C to +150C
RATE AXIS LONGITUDINAL AXIS 7 RATEOUT VCC = 5V 4.75V 2.5V RATE IN 0.25V GND
RATE SENSITIVE AXIS
This is a Z-axis rate-sensing device that is also called a yaw rate sensing device. It produces a positive going output voltage for clockwise rotation about the axis normal to the package top, i.e., clockwise when looking down at the package lid.
Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Applications requiring more than 200 cycles to MIL-STD-883 Method 1010 Condition B (-55C to +125C) require underfill or other means to achieve this requirement. Drops onto hard surfaces can cause shocks of greater than 2000 g and exceed the absolute maximum rating of the device. Care should be exercised in handling to avoid damage.
A1
ABCDEFG LATERAL AXIS
1
Figure 2. RATEOUT Signal Increases with Clockwise Rotation
ESD CAUTION
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although this product features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.
Rev. B | Page 4 of 12
ADXRS150
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS
PGND PDD CP5 CP3 CP4 7 6 ST1 CP1 CP2 5 4
ST2
TEMP
AVCC 3 2 1
2.5V G F E
CMID D
SUMJ C B A
Figure 3. BGA-32 (Bottom View)
Table 3. Pin Function Descriptions
Pin No. 6D, 7D 6A, 7B 6C, 7C 5A, 5B 4A, 4B 3A, 3B 1B, 2A 1C, 2C 1D, 2D 1E, 2E 1F, 2G 3F, 3G 4F, 4G 5F, 5G 6G, 7F 6E, 7E Mnemonic CP5 CP4 CP3 CP1 CP2 AVCC RATEOUT SUMJ CMID 2.5V AGND TEMP ST2 ST1 PGND PDD Description HV Filter Capacitor--47 nF Charge Pump Capacitor--22 nF Charge Pump Capacitor--22 nF Charge Pump Capacitor--22 nF Charge Pump Capacitor--22 nF + Analog Supply Rate Signal Output Output Amp Summing Junction HF Filter Capacitor--100 nF 2.5 V Precision Reference Analog Supply Return Temperature Voltage Output Self-Test for Sensor 2 Self-Test for Sensor 1 Charge Pump Supply Return + Charge Pump Supply
Rev. B | Page 5 of 12
03226-B-003
AGND
RATEOUT
ADXRS150
TYPICAL PERFORMANCE CHARACTERISTICS
4.5 4.0 3.5
2.565 2.560 NO PRIOR WARMUP, 0.6Hz SAMPLING 2.570
RATEOUT (V)
3.0 2.5 2.0 1.5 1.0 0.5 0 -0.05
03226-B-004
RATEOUT (V)
2.555
2.550
2.545
0
0.05
0.10 TIME (sec)
0.15
0.20
0.25
2.540 0 30 60 90 TIME (sec) 120 150 180
Figure 4. Rate Sensing Start-Up Time
Figure 7. Null Settling Time
2.570
0.07 0.06 0.05 0.04
2.565 2.560
RATEOUT (V)
/s
0.03 0.02 0.01 0 0 600 1200 1800 TIME (sec) 2400 3000 3600 1 10 TIME (sec) 100
2.555
2.550
2.545
2.540
Figure 5. Null Stability for 1 Hour
Figure 8. Root Allan Variance vs. Averaging Time
3.4 3.2 3.0
2.5040
2.5035
2.5030
VTEMP (V)
2.8
V2.5 (V)
2.6 2.4 2.2 2.0 1.8 -55 -30 -5 45 20 TEMPERATURE (C) 70 95
2.5025
2.5020
2.5015
2.5010
-40 -30 -20 -10
20 30 0 10 40 TEMPERATURE (C)
50
60
70
80
Figure 6. Temperature Sensor Output
Figure 9. 2.5 V Voltage Reference vs. Temperature
Rev. B | Page 6 of 12
ADXRS150
@ BW = 40 Hz, Typical Vibration Characteristics, 10 g Flat Band, 20 Hz to 2 kHz
PACKAGE LATERAL AXIS (1/60 SEC SAMPLE RATE) 2.500 2.500 PACKAGE LATERAL AXIS (0.5s Average)
2.490
2.490
0g
RATEOUT (V)
2.480
RATEOUT (V)
2.480 10g 2.470
2.470
2.460
2.460
2.450 0 5 TIME (sec) 10
2.450 0 5 TIME (sec) 10
Figure 10. 10 g Random Vibration in Package-Lateral Axis Orientation
PACKAGE LONGITUDINAL AXIS (1/60 SEC SAMPLING RATE) 2.500
Figure 13. 10 g Random Vibration in Package-Lateral Axis Orientation
PACKAGE LONGITUDINAL AXIS (0.5s Average) 2.500
2.490
2.490
10g
RATEOUT (V)
2.480
RATEOUT (V)
2.480 0g 2.470
2.470
2.460
2.460
2.450 0 5 TIME (sec) 10
2.450 0 5 TIME (sec) 10
Figure 11. 10 g Random Vibration in Package-Longitudinal Axis Orientation
RATE AXIS (1/60 SEC SAMPLING RATE) 2.500
Figure 14. 10 g Random Vibration in Package-Longitudinal Axis Orientation
RATE AXIS (0.5s Average) 2.500
2.490
2.490 10g
RATEOUT (V)
2.480
RATEOUT (V)
2.480 0g 2.470
2.470
2.460
2.460
2.450 0 5 TIME (sec) 10
2.450 0 5 TIME (sec) 10
Figure 12. 10 g Random Vibration in Rate Axis Orientation
Figure 15. 10 g Random Vibration in Rate Axis Orientation
Rev. B | Page 7 of 12
ADXRS150
Behavior under Various Shock Test Conditions
Figure 16. Shock Test 100 g, 5 ms in Lateral Axis (40 Hz)
Figure 19. Shock Test 100 g, 5 ms in Longitudinal Axis (40 Hz)
Figure 17. Hi-g Shock Test in Lateral Axis (40 Hz)
Figure 20. Hi-g Shock Test, Lateral Axis, 10x Time Base (40 Hz)
Figure 18. Hi-g Shock in Rate Axis (40 Hz)
Figure 21. Hi-g Shock, Rate Axis, BW Reduced to 8 Hz
Rev. B | Page 8 of 12
ADXRS150
THEORY OF OPERATION
The ADXRS150 operates on the principle of a resonator gyro. Two polysilicon sensing structures each contain a dither frame, which is electrostatically driven to resonance. This produces the necessary velocity element to produce a Coriolis force during angular rate. At two of the outer extremes of each frame, orthogonal to the dither motion, movable fingers are placed between fixed pickoff fingers to form a capacitive pickoff structure that senses Coriolis motion. The resulting signal is fed to a series of gain and demodulation stages that produce the electrical rate signal output. The dual-sensor design rejects external g-forces and vibration. Fabricating the sensor with the signal conditioning electronics preserves signal integrity in noisy environments. The electrostatic resonator requires 14 V to 16 V for operation. Since only 5 V is typically available in most applications, a charge pump is included on-chip. If an external 14 V to 16 V supply is available, the two capacitors on CP1-CP4 can be omitted, and this supply can be connected to CP5 (Pin 7D) with a 100 nF decoupling capacitor in place of the 47 nF. After the demodulation stage, there is a single-pole low-pass filter consisting of an internal 9 k resistor (RSEN1) and an external user-supplied capacitor (CMID). A CMID capacitor of 100 nF sets a 400 Hz 35% low-pass pole and is used to limit high frequency artifacts before final amplification. The bandwidth limit capacitor, COUT, sets the pass bandwidth (see Figure 23 and the Setting Bandwidth section).
22nF 100nF
SUPPLY AND COMMON CONSIDERATIONS
Only power supplies used for supplying analog circuits are recommended for powering the ADXRS150. High frequency noise and transients associated with digital circuit supplies may have adverse effects on device operation. Figure 22 shows the recommended connections for the ADXRS150 where both AVCC and PDD have a separate decoupling capacitor. These should be placed as close to their respective pins as possible before routing to the system analog supply. This will minimize the noise injected by the charge pump that uses the PDD supply. It is also recommended to place the charge pump capacitors connected to the CP1-CP4 pins as close to the part as possible. These capacitors are used to produce the on-chip high voltage supply switched at the dither frequency at approximately 14 kHz. Care should be taken to ensure that there is no more than 50 pF of stray capacitance between CP1-CP4 and ground. Surface-mount chip capacitors are suitable as long as they are rated for over 15 V.
+ 5V - 100nF AGND COUT SUMJ 100nF AVCC ST1 5G ST2 4G SELF TEST
3A
CMID 1F 1D 1C ROUT CORIOLIS 180k 1% SIGNAL CHANNEL RSEN1 RSEN2 RATE DEMOD 1B SENSOR RATE9k 35% 2A OUT RESONATOR LOOP 2G 2.5V REF 1E 2.5V 3G TEMP
CP4
7B
CP3 CP5 7C 7D
PDD
7E
PGND
PTAT CHARGE PUMP/REG. 12V
7F 6G
6A 47nF
PDD 7E 4A 5A CP2 CP1
ST1
6G 7F PGND
6A 7B 7C
7D
03226-B-023
CP4 CP3 CP5 22nF 100nF
CP1
22nF
5A 4A 3A
5G 4G
47nF
ADXRS150
ST2 TEMP
22nF
CP2
5V AVCC
3G 100nF 2A 1B 1C 1D 1E 2G
Figure 23. Block Diagram with External Components
SETTING BANDWIDTH
External capacitors CMID and COUT are used in combination with on-chip resistors to create two low-pass filters to limit the bandwidth of the ADXRS150's rate response. The -3 dB frequency set by ROUT and COUT is
fOUT = 1/ (2 x x ROUT x COUT )
1F
RATEOUT SUMJ
CMID
100nF
2.5V
AGND
COUT = 22nF
NOTE THAT INNER ROWS/COLUMNS OF PINS HAVE BEEN OMITTED FOR CLARITY BUT SHOULD BE CONNECTED IN THE APPLICATION.
Figure 22. Example Application Circuit (Top View)
and can be well controlled since ROUT has been trimmed during manufacturing to be 180 k 1%. Any external resistor applied between the RATEOUT (1B,2A) and SUMJ (1C,2C) pins results in
ROUT = (180 kx REXT )/ (180 k + REXT )
Rev. B | Page 9 of 12
ADXRS150
The -3 dB frequency is set by RSEN (the parallel combination of RSEN1 and RSEN2) at about 4.5 k nominal; CMID is less well controlled since RSEN1 and RSEN2 have been used to trim the rate sensitivity during manufacturing and have a 35% tolerance. Its primary purpose is to limit the high frequency demodulation artifacts from saturating the final amplifier stage. Thus, this pole of nominally 400 Hz @ 0.1 F need not be precise. Lower frequency is preferable, but its variability usually requires it to be about 10 times greater (in order to preserve phase integrity) than the well-controlled output pole. In general, both -3 dB filter frequencies should be set as low as possible to reduce the amplitude of these high frequency artifacts as well as to reduce the overall system noise. ADXRS150's 2.5 V output can be converted and used to make corrections in software for the supply variations.
NULL ADJUSTMENT
Null adjustment is possible by injecting a suitable current to SUMJ (1C, 2C). Adding a suitable resistor to either ground or the positive supply is a simple way of achieving this. The nominal 2.5 V null is for a symmetrical swing range at RATEOUT (1B, 2A). However, a nonsymmetric output swing may be suitable in some applications. Note that if a resistor is connected to the positive supply, supply disturbances may reflect some null instability. Digital supply noise should be avoided particularly in this case (see the Supply and Common Considerations section). The resistor value to use is approximately
RNULL = ( 2.5 x 180 ,000 )/( VNULL0 - VNULL1 )
INCREASING MEASUREMENT RANGE
The full-scale measurement range of the ADXRS150 can be increased by placing an external resistor between the RATEOUT (1B, 2A) and SUMJ (1C, 2C) pins, which would parallel the internal ROUT resistor that is factory-trimmed to 180 k. For example, a 330 k external resistor will give approximately 8.1 mV//sec sensitivity and a commensurate ~50% increase in the full-scale range. This is effective for up to a 4x increase in the full-scale range (minimum value of the parallel resistor allowed is 45 k). Beyond this amount of external sensitivity reduction, the internal circuitry headroom requirements prevent further increase in the linear full-scale output range. The drawbacks of modifying the full-scale range are the additional output null drift (as much as 2/sec over temperature) and the readjustment of the initial null bias (see the Null Adjustment section).
VNULL0 is the unadjusted zero-rate output, and VNULL1 is the target null value. If the initial value is below the desired value, the resistor should terminate on common or ground. If it is above the desired value, the resistor should terminate on the 5 V supply. Values typically are in the 1 M to 5 M range. If an external resistor is used across RATEOUT and SUMJ, the parallel equivalent value is substituted into the above equation. Note that the resistor value is an estimate since it assumes VCC = 5.0 V and VSUMJ = 2.5 V.
SELF-TEST FUNCTION
The ADXRS150 includes a self-test feature that actuates each of the sensing structures and associated electronics in the same manner as if subjected to angular rate. It is activated by standard logic high levels applied to inputs ST1 (5F, 5G), ST2 (4F, 4G), or both. ST1 causes the voltage at RATEOUT to change about -0.66 V, and ST2 causes an opposite change of +0.66 V. The selftest response follows the viscosity temperature dependence of the package atmosphere, approximately 0.25%/C. Activating both ST1 and ST2 simultaneously is not damaging. Since ST1 and ST2 are not necessarily closely matched, actuating both simultaneously may result in an apparent null bias shift.
TEMPERATURE OUTPUT AND CALIBRATION
It is common practice to temperature-calibrate gyros to improve their overall accuracy. The ADXRS150 has a temperature-proportional voltage output that provides input to such a calibration method. The voltage at TEMP (3F, 3G) is nominally 2.5 V at 27C and has a PTAT (proportional to absolute temperature) characteristic of 8.4 mV/C. Note that the TEMP output circuitry is limited to 50 A source current. Using a 3-point calibration technique, it is possible to calibrate the ADXRS150's null and sensitivity drift to an overall accuracy of nearly 300/hour. An overall accuracy of 70/hour or better is possible using more points. Limiting the bandwidth of the device reduces the flat-band noise during the calibration process, improving the measurement accuracy at each calibration point.
CONTINUOUS SELF-TEST
The one-chip integration of the ADXRS150 gives it higher reliability than is obtainable with any other high volume manufacturing method. Also, it is manufactured under a mature BIMOS process that has field-proven reliability. As an additional failure detection measure, power-on self-test can be performed. However, some applications may warrant continuous self-test while sensing rate. Application notes outlining continuous self-test techniques are also available on the Analog Devices website.
USING THE ADXRS150 WITH A SUPPLY-RATIOMETRIC ADC
The ADXRS150's RATEOUT signal is nonratiometric, i.e., neither the null voltage nor the rate sensitivity is proportional to the supply. Instead they are nominally constant for dc supply changes within the 4.75 V to 5.25 V operating range. If the ADXRS150 is used with a supply-ratiometric ADC, the
Rev. B | Page 10 of 12
ADXRS150
ACCELERATION SENSITIVITY
The sign convention used is that lateral acceleration is positive in the direction from Pin Column A to Pin Column G of the package. That is, a device has positive sensitivity if its voltage output increases when the row of Pins 2A-6A are tipped under the row of Pins 2G-6G in the earth's gravity. There are two effects of concern, shifts in the static null and induced null noise. Scale factor is not significantly affected until the acceleration reaches several hundred m/s2. Vibration rectification for frequencies up to 20 kHz is on the order of 0.00002(/s)/(m/s2)2, is not significantly dependent on frequency, and has been verified up to 400 m/s2 rms. Linear vibration spectral density near the 14 kHz sensor resonance translates into output noise. In order to have a significant effect, the vibration must be within the angular rate bandwidth (typically 40 Hz of the resonance), so it takes considerable high frequency vibration to have any effect. Away from the 14 kHz resonance the effect is not discernible, except for vibration frequencies within the angular rate pass band. This can be seen in Figure 10 to Figure 15 for the various sensor axes. The in-band effect can be seen in Figure 25. This is the result of the static g-sensitivity. The specimen used for Figure 25 had a g-sensitivity of 0.15/s/g and its total in-band noise degraded from 3 mV rms to 5 mV rms for the specified vibration. The effect of broadband vibration up to 20 kHz is shown in Figure 24 and Figure 26. The output noise of the part falls away in accordance with the output low-pass filter and does not contain any spikes greater than 1% of the low frequency noise. A typical noise spectrum is shown in Figure 27.
2.60 2.60
2.58
RATEOUT (V)
2.56
2.54
2.52
2.50 0 2 4 TIME (sec) 6 8 10
Figure 25. Random Vibration (Lateral) 2 Hz to 40 Hz, 3.2 g rms
2.60
2.58
RATEOUT (V)
2.56
STATIC 0.8mV rms
2.54
2.52
SHAKING 2.4mV rms
2.50 0 2 4 TIME (sec) 6 8 10
Figure 26. Random Vibration (Lateral) 10 kHz to 20 kHz at 0.01 g/Hz with 60 Hz Sampling and 0.5 sec Averaging
-60
2.58
-70 -80
RATEOUT (V)
RATEOUT (V)
0 2 4 TIME (sec) 6 8 10
2.56
-90 -100 -110 -120
2.54
2.52
2.50
-130 0 10 1000 100 FREQUENCY (Hz) 10000 100000
Figure 24. Random Vibration (Lateral) 10 kHz to 20 kHz at 0.01 g/Hz with 60 Hz Sampling and 0.5 sec Averaging
Figure 27. Noise Spectral Density at RATEOUT -BW = 4 Hz
Rev. B | Page 11 of 12
ADXRS150
OUTLINE DIMENSIONS
7.00 BSC SQ
7 6 5 4
A1 CORNER INDEX AREA
3 2 1 A
BALL A1 INDICATOR TOP VIEW
B C
BOTTOM VIEW
D E F G
4.80 BSC 3.20 2.50 DETAIL A 0.44 0.25 0.60 SEATING 0.55 PLANE 0.50 BALL DIAMETER
DETAIL A
0.15 MAX COPLANARITY
3.65 MAX
0.80 BSC
Figure 28. 32-Lead Chip Scale Ball Grid Array [CSPBGA] (BC-32) Dimensions shown in millimeters
ORDERING GUIDE
Model ADXRS150ABG ADXRS150ABG-Reel ADXRS150EB Temperature Range -40C to +85C -40C to +85C Package Description 32-Lead BGA 32-Lead BGA Evaluation Board Package Outline BC-32 BC-32
(c) 2004 Analog Devices, Inc. All rights reserved. Trademarks and registered trademarks are the property of their respective owners. C03226-0-3/04(B)
Rev. B | Page 12 of 12
This datasheet has been download from: www..com Datasheets for electronics components.


▲Up To Search▲   

 
Price & Availability of ADXRS150ABG

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X